FLIESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES **TECHNOLOGY**

Minimal *rp rp***-open Sets and Maximal** *rp***-open Sets**

Sellamuthu.M. *1 S. Balasubramanian²

*1,2Department of Mathematics, Government Arts College(A), Karur, Tamilnadu, India Arts College(A), Tamilnadu, sellamuthum@rediffmail.com

Abstract

The object of the present paper is to study the notions of minimal rp-open set and maximal *rp*-open set and their basic properties are studied.

Keywords: *rp*-open set, minimal *rp*-open set and maximal *rp*-open set.

Introduction

Nakaoka and Oda have introduced minimal open sets and maximal open sets, which are subclasses of open sets. A. Vadivel and K. Vairamanickam introduced minimal $rg\alpha$ -open sets and maximal rg α -open sets in topological spaces. S. Balasubramanian and P.A.S. Vyjayanthi introduced minimal v-open sets and maximal v-open sets; minimal v-closed sets and maximal v-closed sets in topological spaces. Inspired with these developments developments we further study a new type of open sets namely minimal rp-open sets and maximal rp-open sets.

JOURNAL OF ENGINEERING SCIENCES & RESEARCH
 RESEARCH TECHNOLOGY
 RESEARCH TECHNOLOGY
 RESEARCH ANSIMISM
 RESEARCH ANSIMISM
 RESEARCH ANSIMISM
 RESEARCH ANSIMISM
 RESEARCH ANSIMISM A *RESEARCH ANSIMISM* Throughout the paper a space X means a topological space (X, τ) . The class of rp-open sets is denoted by $RPO(X)$. For any subset A of X its complement, interior, closure, rp-interior, rp-closure are denoted respectively by the symbols A^c , A^o , A^- , $rp(A)^0$ and $rp(A)^-$.

Preliminaries

Definition 1: A proper nonempty

(i) open subset U of X is said to be a **minimal open set** if any open set contained in U is ϕ or U.

(ii) semi-open subset U of X is said to be a **minimal semi-open set** if any semi-open set contained in U is ϕ or U.

(iii) pre-open subset U of X is said to be a **minimal pre-open set** if any pre-open set contained in U is ϕ or U.

(iv) *v*-open subset U of X is said to be a **minimal** *v***-open set** if any *v*-open set contained in U is ϕ or U.

(v) $r g \alpha$ -open subset U of X is said to be a **minimal** $r g \alpha$ **-open set** if any $r g \alpha$ -open set contained in U is ϕ or U. **Definition 2:** A proper nonempty

(i) open subset U of X is said to be a **maximal open set** if any open set containing U is X or U.

(ii) semi-open subset U of X is said to be a **maximal semi-open set** if any semi-open set containing U is X or U.

(iii) pre-open subset U of X is said to be a **maximal pre-open set** if any pre-open set containing U is X or U.

(iv) *v*-open subset U of X is said to be a **maximal** *v***-open set** if any *v*-open set containing U is X or U.

(v) $r g \alpha$ -open subset U of X is said to be a **maximal** *rg* α -open set if any $r g \alpha$ -open set containing U is X or U.

Minimal *rp-***open Sets and Maximal** *rp-***open Sets**

(iii) pre-open subset U of X is said to be a **maximal pre-open set** if any pre-open set containing U is X or U.

(iv) *v*-open subset U of X is said to be a **maximal** *r***₂ open set** if any *v*-open set containing U is X contained in U is ϕ or U.

Remark 1: Minimal open set and minimal rp -open set are not same:

Example 1: Let $X = \{a, b, c\}$; $\tau = \{\phi, \{a, c\}, X\}$. $\{a, c\}$ is Minimal open but not Minimal rp -open; $\{a\}$ and $\{c\}$ are Minimal *rp-*open but not Minimal open.

Minimal *rp*-open but not Minimal open.
Remark 2: From the above example and known results we have the following implications

Theorem 1: (i) Let U be a minimal *rp*-open set and W be a *rp*-open set. Then $U \cap W = \phi$ or $U \subset W$.

(ii) Let U and V be minimal *rp*-open sets. Then $U \cap V = \phi$ or $U = V$.

Proof: (i) Let U be a minimal *rp*-open set and W be a *rp*-open set. If $U \cap W = \emptyset$, then there is nothing to prove. If $U \cap W \neq \emptyset$. Then $U \cap W \subset U$. Since U is a minimal rp-open set, we have $U \cap W = U$. Therefore $U \subset W$.

http: // www.ijesrt.com**(C)** *International Journal of Engineering Sciences & Research Technology* **[529-532]**

(ii) Let U and V be minimal *rp*-open sets. If $U \cap V \neq \emptyset$, then $U \subset V$ and $V \subset U$ by (i). Therefore $U = V$.

Theorem 2: Let U be a minimal *rp*-open set. If $x \in U$, then $U \subset W$ for any regular open neighborhood W of x.

Proof: Let U be a minimal *rp-*open set and x be an element of U. Suppose ∃ a regular open neighborhood W of x such that $U \subset \mathbb{W}$. Then $U \cap W$ is a *rp*-open set such that $U \cap W \subset U$ and $U \cap W \neq \emptyset$. Since U is a minimal *rp*open set, we have U∩ W = U. That is U ⊂ W, which is a contradiction for U $\subset \mathbb{W}$. Therefore U ⊂ W for any regular open neighborhood W of x.

Theorem 3: Let U be a minimal *rp*-open set. If $x \in U$, then $U \subset W$ for some *rp*-open set W containing x.

Theorem 4: Let U be a minimal *rp*-open set. Then $U = \cap \{W: W \in \mathbb{R}P\mathbb{O}(X, x)\}$ for any element x of U.

Proof: By theorem[3.3] and U is *rp*-open set containing x, we have $U \subset \cap \{W : W \in \mathbb{R}PO(X, x)\} \subset U$.

Theorem 5: Let U be a nonempty *rp*-open set. Then the following three conditions are equivalent.

(i) U is a minimal *rp-*open set

(ii) $U \subset rp(S)^-$ for any nonempty subset S of U

(iii) $rp(U)^{-} = rp(S)^{-}$ for any nonempty subset S of U.

Proof: (i) \Rightarrow (ii) Let x∈U; U be minimal *rp*-open set and S(\neq ϕ) ⊂U. By theorem[3.3], for any *rp*-open set W containing x, $S \subset U \subset W \Rightarrow S \subset W$. Now $S = S \cap U \subset S \cap W$. Since $S \neq \emptyset$, $S \cap W \neq \emptyset$. Since W is any *rp*-open set containing x, by theorem[5.03], $x \in rp(S)^{-}$. That is $x \in U \implies x \in rp(S)^{-} \implies U \subset rp(S)^{-}$ for any nonempty subset S of U.

(ii) \Rightarrow (iii) Let S be a nonempty subset of U. That is S ⊂ U \Rightarrow *rp*(S)^{$-$} ⊂ *rp*(U)^{$-$} → (1). Again from (ii) U ⊂ *rp*(S)^{$-$} for any $S(\neq \phi) \subset U \Rightarrow rp(U)$ ⁻ $\subset rp(rg(S)^{-})$ = $rp(S)^{-}$. That is $rp(U)$ ⁻ $\subset rp(S)^{-}$ \to (2). From (1) and (2), we have $rp(U)^{-} = rp(S)^{-}$ for any nonempty subset S of U.

 $(iii) \Rightarrow (i)$ From (3) we have $rp(U)^{-} = rp(S)^{-}$ for any nonempty subset S of U. Suppose U is not a minimal *rp*-open set. Then \exists a nonempty *rp*-open set V such that V ⊂ U and V ≠ U. Now \exists an element a in U such that a∉ V \Rightarrow a∈ V^c. That is $rp({a})^- \subset rp(V^c)^- = V^c$, as V^c is *rp*-closed set in X. It follows that $rp({a})^- \neq rp(U)^-$. This is a contradiction for $rp({a})^T = rp(U)^T$ for any ${a}(\neq \phi) \subset U$. Therefore U is a minimal *rp*-open set.

Theorem 6: Let $V \neq \emptyset$ be a finite *rp*-open set. Then \exists at least one (finite) minimal *rp*-open set U such that $U ⊂ V$.

Proof: Let V be a nonempty finite *rp*-open set. If V is a minimal *rp*-open set, we may set $U = V$. If V is not a minimal *rp*-open set, then \exists (finite) *rp*-open set V₁ such that $\phi \neq V_1 \subset V$. If V₁ is a minimal *rp*-open set, we may set $U = V_1$. If V_1 is not a minimal *rp*-open set, then \exists (finite) *rp*-open set V_2 such that $\phi \neq V_2 \subset V_1$. Continuing this process, we have a sequence of *rp*-open sets $V \supset V_1 \supset V_2 \supset V_3 \supset ... \supset V_k \supset ...$ Since V is a finite set, this process repeats only finitely. Then finally we get a minimal rp -open set $U = V_n$ for some positive integer n.

 [A topological space X is said to be locally finite space if each of its elements is contained in a finite open set.] *Corollary 1:* Let X be a locally finite space and V $\neq \emptyset$ be an *rp*-open set. Then \exists at least one (finite) minimal *rp*-

open set U such that $U \subset V$.

Proof: Let X be a locally finite space and V be a nonempty *rp-*open set. Let x in V. Since X is locally finite space, we have a finite open set V_x such that x in V_x. Then V∩V_x is a finite *rp*-open set. By Theorem 3.6 ∃ at least one (finite) minimal *rp*-open set U such that $U \subset V \cap V_x$. That is $U \subset V \cap V_x \subset V$. Hence \exists at least one (finite) minimal *rp*-open set U such that $U \subset V$.

Corollary 2: Let V be a finite minimal open set. Then \exists at least one (finite) minimal *rp*-open set U such that $U \subset V$. **Proof**: Let V be a finite minimal open set. Then V is a nonempty finite *rp-*open set. By Theorem 3.6, ∃ at least one (finite) minimal *rp*-open set U such that $U \subset V$.

Theorem 7: Let U; U_λ be minimal *rp*-open sets for any element $\lambda \in \Gamma$. If $U \subset \bigcup_{\lambda \in \Gamma} U_{\lambda}$, then \exists an element $\lambda \in \Gamma$ such that $U = U_{\lambda}$.

Proof: Let $U \subset \bigcup_{\lambda \in \Gamma} U_{\lambda}$. Then $U \cap (\bigcup_{\lambda \in \Gamma} U_{\lambda}) = U$. That is $\bigcup_{\lambda \in \Gamma} (U \cap U_{\lambda}) = U$. Also by theorem[3.1] (ii), $U \cap U_{\lambda} = \emptyset$ or $U = U_λ$ for any $λ ∈ Γ$. It follows that $∃$ an element $λ ∈ Γ$ such that $U = U_λ$.

Theorem 8: Let U; U_λ be minimal *rp*-open sets for any $\lambda \in \Gamma$. If $U = U_\lambda$ for any $\lambda \in \Gamma$, then $(U_{\lambda \in \Gamma} U_\lambda) \cap U = \emptyset$. **Proof**: Assume $(U_{\lambda \in \Gamma} U_{\lambda}) \cap U \neq \emptyset$. That is $U_{\lambda \in \Gamma} (U_{\lambda} \cap U) \neq \emptyset$. Then \exists an element $\lambda \in \Gamma$ such that $U \cap U_{\lambda} \neq \emptyset$. By theorem 3.1(ii), we have $U = U_{\lambda}$, which contradicts the fact that $U \neq U_{\lambda}$ for any $\lambda \in \Gamma$. Hence $(\bigcup_{\lambda \in \Gamma} U_{\lambda}) \cap U = \emptyset$. We now introduce maximal *rp-*open sets in topological spaces as follows.

Definition 2: A proper nonempty *rp*-open $U \subset X$ is said to be **maximal** *rp***-open set** if any *rp*-open set containing U is either X or U.

Remark 3: Maximal open set and maximal *rp-*open set are not same.

Example 2: In Example 1, {a, c} is Maximal open but not Maximal *rp-*open; {a, b} and {b, c} are Maximal *rp-*open but not Maximal open.

Remark 4: From the known results and by the above example we have the following implications:

Theorem 9: A proper nonempty subset F of X is maximal *rp-*open set iff X-F is a minimal *rp-*closed set.

Proof: Let F be a maximal *rp-*open set. Suppose X-F is not a minimal *rp-*open set. Then ∃ *rp-*open set U ≠ X-F such that $\phi \neq U \subset X$ -F. That is $F \subset X$ -U and X-U is a *rp*-open set which is a contradiction for F is a minimal *rp*-closed set.

Conversely let X-F be a minimal *rp-*open set. Suppose F is not a maximal *rp-*open set. Then ∃ *rp-*open set E ≠ F such that $F \subset E \neq X$. That is $\phi \neq X-E \subset X-F$ and X-E is a *rp*-open set which is a contradiction for X-F is a minimal *rp-*closed set. Therefore F is a maximal *rp-*open set.

Theorem 10: (i) Let F be a maximal *rp*-open set and W be a *rp*-open set. Then $F \cup W = X$ or $W \subset F$.

(ii) Let F and S be maximal *rp*-open sets. Then $F \cup S = X$ or $F = S$.

Proof: (i) Let F be a maximal *rp*-open set and W be a *rp*-open set. If F∪ W = X, then there is nothing to prove. Suppose $F \cup W \neq X$. Then $F \subset F \cup W$. Therefore $F \cup W = F \Rightarrow W \subset F$.

(ii) Let F and S be maximal *rp*-open sets. If F∪S \neq X, then we have F ⊂ S and S ⊂ F by (i). Therefore F = S.

Theorem 11: Let F be a maximal *rp*-open set. If x is an element of F, then for any *rp*-open set S containing x, $F \cup S$ $=X$ or $S \subset F$.

Proof: Let F be a maximal *rp*-open set and x is an element of F. Suppose ∃ *rp*-open set S containing x such that F ∪ S ≠ X. Then F ⊂ F ∪ S and F ∪ S is a *rp-*open set, as the finite union of *rp-*open sets is a *rp-*open set. Since F is a *rp*-open set, we have $F \cup S = F$. Therefore $S \subset F$.

Theorem 12: Let F_α , F_β , F_δ be maximal *rp*-open sets such that $F_\alpha \neq F_\beta$. If $F_\alpha \cap F_\beta \subset F_\delta$, then either $F_\alpha = F_\delta$ or $F_\beta = F_\delta$ **Proof**: Given that $F_{\alpha} \cap F_{\beta} \subset F_{\delta}$. If $F_{\alpha} = F_{\delta}$ then there is nothing to prove.

If $F_\alpha \neq F_\delta$ then we have to prove $F_\beta = F_\delta$. Now $F_\beta \cap F_\delta = F_\beta \cap (F_\delta \cap X) = F_\beta \cap (F_\delta \cap (F_\alpha \cup F_\beta))$ (by thm. 3.10 (ii)) = $F_\beta \cap ((F_\delta \cap F_\alpha) \cup (F_\delta \cap F_\beta)) = (F_\beta \cap F_\delta \cap F_\alpha) \cup (F_\beta \cap F_\delta \cap F_\beta)$

 $= (F_{\alpha} \cap F_{\beta}) \cup (F_{\delta} \cap F_{\beta})$ (by $F_{\alpha} \cap F_{\beta} \subset F_{\delta}$) = $(F_{\alpha} \cup F_{\delta}) \cap F_{\beta} = X \cap F_{\beta}$ (Since F_{α} and F_{δ} are maximal *rp*-open sets by theorem[3.10](ii), $F_\alpha \cup F_\delta = X$) = F_β . That is $F_\beta \cap F_\delta = F_\beta \Rightarrow F_\beta \subset F_\delta$ Since F_β and F_δ are maximal *rp*-open sets, we have $F_8 = F_8$ Therefore $F_8 = F_8$

Theorem 13: Let F_α , F_β and F_δ be different maximal *rp*-open sets to each other. Then $(F_\alpha \cap F_\beta) \not\subset (F_\alpha \cap F_\delta)$.

Proof: Let $(F_\alpha \cap F_\beta) \subset (F_\alpha \cap F_\delta) \Rightarrow (F_\alpha \cap F_\beta) \cup (F_\delta \cap F_\beta) \subset (F_\alpha \cap F_\delta) \cup (F_\delta \cap F_\beta) \Rightarrow (F_\alpha \cup F_\delta) \cap F_\beta \subset F_\delta \cap F_\beta$ $(F_{\alpha} \cup F_{\beta})$. Since by theorem 3.10(ii), $F_{\alpha} \cup F_{\delta} = X$ and $F_{\alpha} \cup F_{\beta} = X \Rightarrow X \cap F_{\beta} \subset F_{\delta} \cap X \Rightarrow F_{\beta} \subset F_{\delta}$ From the definition of maximal *rp*-open set it follows that $F_\beta = F_\delta$, which is a contradiction to the fact that F_α , F_β and F_δ are different to each other. Therefore $(F_{\alpha} \cap F_{\beta}) \not\subset (F_{\alpha} \cap F_{\delta})$.

Theorem 14: Let F be a maximal *rp*-open set and x be an element of F. Then $F = \bigcup \{ S : S \text{ is a } rp\text{-open set } S \}$ containing x such that $F \cup S \neq X$.

Proof: By theorem 3.12 and fact that F is a *rp*-open set containing x, we have $F \subset \cup \{S: S \text{ is a } r \text{p-open set}$ containing x such that $F \cup S \neq X$ } – F. Therefore we have the result.

Theorem 15: If F ≠ ϕ is proper cofinite *rp*-open set. Then \exists (cofinite) maximal *rp*-open set E such that F ⊂ E.

Proof: If F is maximal *rp*-open set, we may set $E = F$. If F is not a maximal *rp*-open set, then \exists (cofinite) *rp*-open set F₁ such that F ⊂ F₁ ≠ X. If F₁ is a maximal *rp*-open set, we may set E = F₁. If F₁ is not a maximal *rp*-open set, then \exists a (cofinite) *rp*-open set F_2 such that $F \subset F_1 \subset F_2 \neq X$. Continuing this process, we have a sequence of *rp*-open, $F \subset F_1$ $F_1 \subset F_2 \subset ... \subset F_k \subset ...$ Since F is a cofinite set, this process repeats only finitely. Then, finally we get a maximal *rp*-open set $E = E_n$ for some positive integer n.

Theorem 16: Let F be a maximal *rp*-open set. If $x \in X$ -F. Then X -F $\subset E$ for any *rp*-open set E containing x. **Proof**: Let F be a maximal *rp*-open set and x in X-F. E $\subset \subset F$ for any *rp*-open set E containing x. Then E ∪ F = X by theorem 3.10(ii). Therefore $X-F \subset E$.

Conclusion

In this paper we introduced the concept of minimal *rp*-open and maximal *rp*-open sets, studied their basic properties.

References

[1] S.Balasubramanian, and Sandhya.C., Minimal gs-open sets and maximal gsclosed sets – Asian Journal of Current Engineering and Maths1: 2 March - April (2012) 34 – 38.

- [2] S.Balasubramanian, K.A.Venkatesh, and C.Sandhya, Minimal pg-open sets and maximal pg-closed sets– Inter. J. Math. Archive,Vol 3, No.3 (2012)1246 – 1253.
- [3] S.Balasubramanian, Minimal g-open sets Asian Journal of current Engineering and Maths, 1: 3 May - June (2012) 69–73.
- [4] S.Balasubramanian, and Ch.Chaithanya, Minimal α g-open sets – Aryabhatta Journal of Mathematics and Informatics, Vol.4, No.1, Jan-June(2012)83 – 94.
- [5] S.Balasubramanian, K.A.Venkatesh, and C.Sandhya, Minimal spg-open sets and maximal spg-closed sets – AJCEM (In Press)
- [6] F. Nakaoka and N. Oda, Some Properties of Maximal Open Sets, Int. J. Math. Sci. 21,(2003)1331-1340.
- [7] F. Nakaoka and N. Oda, Some Applications of Minimal Open Sets, Int. J. Math. Sci. 27- 8, (2001), 471-476.
- [8] F. Nakaoka and N. Oda, On Minimal Closed Sets, Proceeding of Topological spaces Theory and its Applications, 5(2003), 19-21.