

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Minimal rp-open Sets and Maximal rp-open Sets

Sellamuthu.M.*1 S. Balasubramanian²

*1,2Department of Mathematics, Government Arts College(A), Karur, Tamilnadu, India

sellamuthum@rediffmail.com

Abstract

The object of the present paper is to study the notions of minimal rp-open set and maximal rp-open set and their basic properties are studied.

Keywords: rp-open set, minimal rp-open set and maximal rp-open set.

Introduction

Nakaoka and Oda have introduced minimal open sets and maximal open sets, which are subclasses of open sets. A. Vadivel and K. Vairamanickam introduced minimal $rg\alpha$ -open sets and maximal $rg\alpha$ -open sets in topological spaces. S. Balasubramanian and P.A.S. Vyjayanthi introduced minimal v-open sets and maximal v-open sets; minimal v-closed sets and maximal v-closed sets in topological spaces. Inspired with these developments we further study a new type of open sets namely minimal rp-open sets and maximal rp-open sets.

Throughout the paper a space X means a topological space (X, τ) . The class of rp-open sets is denoted by RPO(X). For any subset A of X its complement, interior, closure, rp-interior, rp-closure are denoted respectively by the symbols A^c , A^o , A^- , $rp(A)^0$ and $rp(A)^-$.

Preliminaries

Definition 1: A proper nonempty

- (i) open subset U of X is said to be a **minimal open set** if any open set contained in U is ϕ or U.
- (ii) semi-open subset U of X is said to be a **minimal semi-open set** if any semi-open set contained in U is ϕ or U.
- (iii) pre-open subset U of X is said to be a **minimal pre-open set** if any pre-open set contained in U is ϕ or U.
- (iv) v-open subset U of X is said to be a **minimal v-open set** if any v-open set contained in U is ϕ or U.
- (v) $rg\alpha$ -open subset U of X is said to be a **minimal** $rg\alpha$ -open set if any $rg\alpha$ -open set contained in U is ϕ or U.

Definition 2: A proper nonempty

- (i) open subset U of X is said to be a **maximal open set** if any open set containing U is X or U.
- (ii) semi-open subset U of X is said to be a **maximal semi-open set** if any semi-open set containing U is X or U.
- (iii) pre-open subset U of X is said to be a **maximal pre-open set** if any pre-open set containing U is X or U.
- (iv) v-open subset U of X is said to be a **maximal** v-open set if any v-open set containing U is X or U.
- (v) $rg\alpha$ -open subset U of X is said to be a **maximal** $rg\alpha$ -open set if any $rg\alpha$ -open set containing U is X or U.

Minimal rp-open Sets and Maximal rp-open Sets

Definition 1: A proper nonempty rp-open subset U of X is said to be a **minimal** rp-open set if any rp-open set contained in U is ϕ or U.

Remark 1: Minimal open set and minimal *rp*-open set are not same:

Example 1: Let $X = \{a, b, c\}$; $\tau = \{\phi, \{a, c\}, X\}$. $\{a, c\}$ is Minimal open but not Minimal *rp*-open; $\{a\}$ and $\{c\}$ are Minimal *rp*-open but not Minimal open.

Remark 2: From the above example and known results we have the following implications

Theorem 1: (i) Let U be a minimal rp-open set and W be a rp-open set. Then $U \cap W = \emptyset$ or $U \subset W$.

(ii) Let U and V be minimal *rp*-open sets. Then $U \cap V = \emptyset$ or U = V.

Proof: (i) Let U be a minimal rp-open set and W be a rp-open set. If $U \cap W = \emptyset$, then there is nothing to prove.

If $U \cap W \neq \emptyset$. Then $U \cap W \subset U$. Since U is a minimal rp -open set, we have $U \cap W = U$. Therefore $U \subset W$.

(ii) Let U and V be minimal rp-open sets. If $U \cap V \neq \emptyset$, then $U \subset V$ and $V \subset U$ by (i). Therefore U = V.

Theorem 2: Let U be a minimal rp-open set. If $x \in U$, then $U \subset W$ for any regular open neighborhood W of x.

Proof: Let U be a minimal *rp*-open set and x be an element of U. Suppose \exists a regular open neighborhood W of x such that $U \subset W$. Then $U \cap W$ is a *rp*-open set such that $U \cap W \subset U$ and $U \cap W \neq \emptyset$. Since U is a minimal *rp*-open set, we have $U \cap W = U$. That is $U \subset W$, which is a contradiction for $U \not\subset W$. Therefore $U \subset W$ for any regular open neighborhood W of x.

ISSN: 2277-9655

Theorem 3: Let U be a minimal *rp*-open set. If $x \in U$, then $U \subset W$ for some *rp*-open set W containing x.

Theorem 4: Let U be a minimal rp-open set. Then $U = \bigcap \{W : W \in RPO(X, x)\}$ for any element x of U.

Proof: By theorem[3.3] and U is rp-open set containing x, we have $U \subset \cap \{W : W \in RPO(X, x)\} \subset U$.

Theorem 5: Let U be a nonempty *rp*-open set. Then the following three conditions are equivalent.

- (i) U is a minimal rp-open set
- (ii) $U \subset rp(S)^-$ for any nonempty subset S of U
- (iii) $rp(U)^- = rp(S)^-$ for any nonempty subset S of U.
- **Proof**: (i) \Rightarrow (ii) Let $x \in U$; U be minimal rp-open set and $S(\neq \phi) \subset U$. By theorem[3.3], for any rp-open set W containing x, $S \subset U \subset W \Rightarrow S \subset W$. Now $S = S \cap U \subset S \cap W$. Since $S \neq \phi$, $S \cap W \neq \phi$. Since W is any rp-open set containing x, by theorem[5.03], $x \in rp(S)^-$. That is $x \in U \Rightarrow x \in rp(S)^- \Rightarrow U \subset rp(S)^-$ for any nonempty subset S of U.
- (ii) \Rightarrow (iii) Let S be a nonempty subset of U. That is $S \subset U \Rightarrow rp(S)^- \subset rp(U)^- \to (1)$. Again from (ii) $U \subset rp(S)^-$ for any $S(\neq \emptyset) \subset U \Rightarrow rp(U)^- \subset rp(rp(S)^-)^- = rp(S)^-$. That is $rp(U)^- \subset rp(S)^- \to (2)$. From (1) and (2), we have $rp(U)^- = rp(S)^-$ for any nonempty subset S of U.
- (iii) \Rightarrow (i) From (3) we have $rp(U)^- = rp(S)^-$ for any nonempty subset S of U. Suppose U is not a minimal rp-open set. Then \exists a nonempty rp-open set V such that $V \subset U$ and $V \neq U$. Now \exists an element a in U such that $a \notin V \Rightarrow a \in V^c$. That is $rp(\{a\})^- \subset rp(V^c)^- = V^c$, as V^c is rp-closed set in X. It follows that $rp(\{a\})^- \neq rp(U)^-$. This is a contradiction for $rp(\{a\})^- = rp(U)^-$ for any $\{a\}(\neq \phi) \subset U$. Therefore U is a minimal rp-open set.

Theorem 6: Let $V \neq \emptyset$ be a finite rp-open set. Then \exists at least one (finite) minimal rp-open set U such that $U \subset V$.

Proof: Let V be a nonempty finite rp-open set. If V is a minimal rp-open set, we may set U = V. If V is not a minimal rp-open set, then \exists (finite) rp-open set V_1 such that $\phi \neq V_1 \subset V$. If V_1 is a minimal rp-open set, we may set $U = V_1$. If V_1 is not a minimal rp-open set, then \exists (finite) rp-open set V_2 such that $\phi \neq V_2 \subset V_1$. Continuing this process, we have a sequence of rp-open sets $V \supset V_1 \supset V_2 \supset V_3 \supset \supset V_k \supset$ Since V is a finite set, this process repeats only finitely. Then finally we get a minimal rp-open set $U = V_n$ for some positive integer n.

[A topological space X is said to be locally finite space if each of its elements is contained in a finite open set.]

Corollary 1: Let X be a locally finite space and $V \neq \phi$ be an rp-open set. Then \exists at least one (finite) minimal rp-open set U such that $U \subset V$.

Proof: Let X be a locally finite space and V be a nonempty rp-open set. Let x in V. Since X is locally finite space, we have a finite open set V_x such that x in V_x . Then $V \cap V_x$ is a finite rp-open set. By Theorem 3.6 \exists at least one (finite) minimal rp-open set U such that $U \subset V \cap V_x$. That is $U \subset V \cap V_x \subset V$. Hence \exists at least one (finite) minimal rp-open set U such that $U \subset V$.

Corollary 2: Let V be a finite minimal open set. Then \exists at least one (finite) minimal rp-open set U such that $U \subseteq V$. **Proof**: Let V be a finite minimal open set. Then V is a nonempty finite rp-open set. By Theorem 3.6, \exists at least one (finite) minimal rp-open set U such that $U \subseteq V$.

Theorem 7: Let U; U_{λ} be minimal p-open sets for any element $\lambda \in \Gamma$. If $U \subset \bigcup_{\lambda \in \Gamma} U_{\lambda}$, then \exists an element $\lambda \in \Gamma$ such that $U = U_{\lambda}$.

Proof: Let $U \subset \bigcup_{\lambda \in \Gamma} U_{\lambda}$. Then $U \cap (\bigcup_{\lambda \in \Gamma} U_{\lambda}) = U$. That is $\bigcup_{\lambda \in \Gamma} (U \cap U_{\lambda}) = U$. Also by theorem[3.1] (ii), $U \cap U_{\lambda} = \emptyset$ or $U = U_{\lambda}$ for any $\lambda \in \Gamma$. It follows that \exists an element $\lambda \in \Gamma$ such that $U = U_{\lambda}$.

Theorem 8: Let U; U_{λ} be minimal rp-open sets for any $\lambda \in \Gamma$. If $U = U_{\lambda}$ for any $\lambda \in \Gamma$, then $(\bigcup_{\lambda \in \Gamma} U_{\lambda}) \cap U = \emptyset$.

Proof: Assume $(\bigcup_{\lambda \in \Gamma} U_{\lambda}) \cap U \neq \emptyset$. That is $\bigcup_{\lambda \in \Gamma} (U_{\lambda} \cap U) \neq \emptyset$. Then \exists an element $\lambda \in \Gamma$ such that $U \cap U_{\lambda} \neq \emptyset$. By theorem 3.1(ii), we have $U = U_{\lambda}$, which contradicts the fact that $U \neq U_{\lambda}$ for any $\lambda \in \Gamma$. Hence $(\bigcup_{\lambda \in \Gamma} U_{\lambda}) \cap U = \emptyset$. We now introduce maximal rp-open sets in topological spaces as follows.

Definition 2: A proper nonempty rp-open $U \subset X$ is said to be **maximal** rp-open set if any rp-open set containing U is either X or U.

Remark 3: Maximal open set and maximal *rp*-open set are not same.

Example 2: In Example 1, $\{a, c\}$ is Maximal open but not Maximal rp-open; $\{a, b\}$ and $\{b, c\}$ are Maximal rp-open but not Maximal open.

Remark 4: From the known results and by the above example we have the following implications:

Theorem 9: A proper nonempty subset F of X is maximal rp-open set iff X-F is a minimal rp-closed set.

Proof: Let F be a maximal rp-open set. Suppose X-F is not a minimal rp-open set. Then $\exists rp$ -open set $U \neq X$ -F such that $\phi \neq U \subset X$ -F. That is $F \subset X$ -U and X-U is a rp-open set which is a contradiction for F is a minimal rp-closed set.

Conversely let X-F be a minimal rp-open set. Suppose F is not a maximal rp-open set. Then $\exists rp$ -open set $E \neq F$ such that $F \subset E \neq X$. That is $\phi \neq X$ -E $\subset X$ -F and X-E is a rp-open set which is a contradiction for X-F is a minimal rp-closed set. Therefore F is a maximal rp-open set.

Theorem 10: (i) Let F be a maximal rp-open set and W be a rp-open set. Then $F \cup W = X$ or $W \subset F$.

(ii) Let F and S be maximal rp-open sets. Then $F \cup S = X$ or F = S.

Proof: (i) Let F be a maximal *rp*-open set and W be a *rp*-open set. If $F \cup W = X$, then there is nothing to prove. Suppose $F \cup W \neq X$. Then $F \subset F \cup W$. Therefore $F \cup W = F \Rightarrow W \subset F$.

(ii) Let F and S be maximal rp-open sets. If $F \cup S \neq X$, then we have $F \subset S$ and $S \subset F$ by (i). Therefore F = S.

Theorem 11: Let F be a maximal rp-open set. If x is an element of F, then for any rp-open set S containing x, F \cup S = X or S \subset F.

Proof: Let F be a maximal rp-open set and x is an element of F. Suppose $\exists rp$ -open set S containing x such that $F \cup S \neq X$. Then $F \subset F \cup S$ and $F \cup S$ is a rp-open set, as the finite union of rp-open sets is a rp-open set. Since F is a rp-open set, we have $F \cup S = F$. Therefore $S \subset F$.

Theorem 12: Let F_{α} , F_{β} , F_{δ} be maximal p-open sets such that $F_{\alpha} \neq F_{\beta}$. If $F_{\alpha} \cap F_{\beta} \subset F_{\delta}$, then either $F_{\alpha} = F_{\delta}$ or $F_{\beta} = F_{\delta}$ **Proof**: Given that $F_{\alpha} \cap F_{\beta} \subset F_{\delta}$. If $F_{\alpha} = F_{\delta}$ then there is nothing to prove.

If $F_{\alpha} \neq F_{\delta}$ then we have to prove $F_{\beta} = F_{\delta}$. Now $F_{\beta} \cap F_{\delta} = F_{\beta} \cap (F_{\delta} \cap X) = F_{\beta} \cap (F_{\delta} \cap (F_{\alpha} \cup F_{\beta}))$ (ii) $F_{\beta} \cap (F_{\delta} \cap F_{\alpha}) \cup (F_{\delta} \cap F_{\beta}) = (F_{\beta} \cap F_{\delta} \cap F_{\alpha}) \cup (F_{\delta} \cap F_{\delta}) = (F_{\delta} \cap F_{\delta} \cap F_{\delta$

= $(F_{\alpha} \cap F_{\beta}) \cup (F_{\delta} \cap F_{\beta})$ (by $F_{\alpha} \cap F_{\beta} \subset F_{\delta}$) = $(F_{\alpha} \cup F_{\delta}) \cap F_{\beta} = X \cap F_{\beta}$ (Since F_{α} and F_{δ} are maximal rp-open sets by theorem[3.10](ii), $F_{\alpha} \cup F_{\delta} = X$) = F_{β} . That is $F_{\beta} \cap F_{\delta} = F_{\beta} \Rightarrow F_{\beta} \subset F_{\delta}$ Since F_{β} and F_{δ} are maximal rp-open sets, we have $F_{\beta} = F_{\delta}$ Therefore $F_{\beta} = F_{\delta}$

Theorem 13: Let F_{α} , F_{β} and F_{δ} be different maximal p-open sets to each other. Then $(F_{\alpha} \cap F_{\beta}) \not\subset (F_{\alpha} \cap F_{\delta})$.

Proof: Let $(F_{\alpha} \cap F_{\beta}) \subset (F_{\alpha} \cap F_{\delta}) \Rightarrow (F_{\alpha} \cap F_{\beta}) \cup (F_{\delta} \cap F_{\beta}) \subset (F_{\alpha} \cap F_{\delta}) \cup (F_{\delta} \cap F_{\beta}) \Rightarrow (F_{\alpha} \cup F_{\delta}) \cap F_{\beta} \subset F_{\delta} \cap (F_{\alpha} \cup F_{\beta})$. Since by theorem 3.10(ii), $F_{\alpha} \cup F_{\delta} = X$ and $F_{\alpha} \cup F_{\beta} = X \Rightarrow X \cap F_{\beta} \subset F_{\delta} \cap X \Rightarrow F_{\beta} \subset F_{\delta}$ From the definition of maximal *rp*-open set it follows that $F_{\beta} = F_{\delta}$, which is a contradiction to the fact that F_{α} , F_{β} and F_{δ} are different to each other. Therefore $(F_{\alpha} \cap F_{\beta}) \not\subset (F_{\alpha} \cap F_{\delta})$.

Theorem 14: Let F be a maximal rp-open set and x be an element of F. Then $F = \bigcup \{ S: S \text{ is a } rp\text{-open set containing x such that } F \cup S \neq X \}.$

Proof: By theorem 3.12 and fact that F is a *rp*-open set containing x, we have $F \subset \bigcup \{ S: S \text{ is a } rp\text{-open set containing x such that } F \cup S \neq X \} - F$. Therefore we have the result.

Theorem 15: If $F \neq \emptyset$ is proper cofinite *rp*-open set. Then \exists (cofinite) maximal *rp*-open set E such that $F \subset E$.

Proof: If F is maximal rp-open set, we may set E = F. If F is not a maximal rp-open set, then \exists (cofinite) rp-open set F_1 such that $F \subseteq F_1 \neq X$. If F_1 is a maximal rp-open set, we may set $E = F_1$. If F_1 is not a maximal rp-open set, then \exists a (cofinite) rp-open set F_2 such that $F \subseteq F_1 \subseteq F_2 \neq X$. Continuing this process, we have a sequence of rp-open, $F \subseteq F_1 \subseteq F_2 \subseteq ... \subseteq F_k \subseteq ...$ Since F is a cofinite set, this process repeats only finitely. Then, finally we get a maximal rp-open set $E = E_n$ for some positive integer n.

Theorem 16: Let F be a maximal rp-open set. If $x \in X$ -F. Then X-F \subset E for any rp-open set E containing x.

Proof: Let F be a maximal *rp*-open set and x in X-F. E $\not\subset$ F for any *rp*-open set E containing x. Then E \cup F = X by theorem 3.10(ii). Therefore X-F \subset E.

Conclusion

In this paper we introduced the concept of minimal *rp*-open and maximal *rp*-open sets, studied their basic properties.

References

[1] S.Balasubramanian, and Sandhya.C., Minimal gs-open sets and maximal gsclosed sets – Asian Journal of Current Engineering and Maths1: 2 March - April (2012) 34 – 38.

ISSN: 2277-9655

- [2] S.Balasubramanian, K.A.Venkatesh, and C.Sandhya, Minimal pg-open sets and maximal pg-closed sets— Inter. J. Math. Archive, Vol 3, No.3 (2012)1246 1253.
- [3] S.Balasubramanian, Minimal g-open sets Asian Journal of current Engineering and Maths, 1: 3 May June (2012) 69–73.

[4] S.Balasubramanian, and Ch.Chaithanya, Minimal αg-open sets – Aryabhatta Journal of Mathematics and Informatics, Vol.4, No.1, Jan-June(2012)83 – 94.

ISSN: 2277-9655

- [5] S.Balasubramanian, K.A.Venkatesh, and C.Sandhya, Minimal spg-open sets and maximal spg-closed sets – AJCEM (In Press)
- [6] F. Nakaoka and N. Oda, Some Properties of Maximal Open Sets, Int. J. Math. Sci. 21,(2003)1331-1340.
- [7] F. Nakaoka and N. Oda, Some Applications of Minimal Open Sets, Int. J. Math. Sci. 27-8, (2001), 471-476.
- [8] F. Nakaoka and N. Oda, On Minimal Closed Sets, Proceeding of Topological spaces Theory and its Applications, 5(2003), 19-21.