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Introduction  

Nakaoka and Oda have introduced minimal 
open sets and maximal open sets, which are 
subclasses of open sets. A. Vadivel and K. 
Vairamanickam introduced minimal rg
and maximal rgα-open sets in topological spaces. 
Balasubramanian and P.A.S. Vyjayanthi introduced 
minimal v-open sets and maximal v
minimal v-closed sets and maximal v-
topological spaces. Inspired with these developments 
we further study a new type of open sets namely 
minimal rp-open sets and maximal rp
 
Preliminaries  
Definition 1: A proper nonempty  
(i) open subset U of X is said to be a minimal
(ii) semi-open subset U of X is said to be a 
(iii) pre-open subset U of X is said to be a 
(iv) v-open subset U of X is said to be a 
(v) rgα-open subset U of X is said to be a 
Definition 2: A proper nonempty  
(i) open subset U of X is said to be a maximal open set
(ii) semi-open subset U of X is said to be a 
(iii) pre-open subset U of X is said to be a 
(iv) v-open subset U of X is said to be a 
(v) rgα-open subset U of X is said to be a 
                       
Minimal rp-open Sets and Maximal 
Definition 1: A proper nonempty rp-open subset U of X is said to be a 
contained in U is φ or U. 
Remark 1: Minimal open set and minimal 
Example 1: Let X = {a, b, c}; τ = {φ, {a, c}, X}. {a, c} is Minimal open but not Minimal 
Minimal rp-open but not Minimal open. 
Remark 2: From the above example and known results we have the following implications
Theorem 1: (i) Let U be a minimal rp-open set and W be a 
(ii) Let U and V be minimal rp-open sets. Then U 
Proof: (i) Let U be a minimal rp-open set and W be a 
If U ∩ W ≠≠≠≠ φ.  Then U ∩W ⊂ U. Since U is a minimal 
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Abstract 
The object of the present paper is to study the notions of  minimal rp-open set and maximal 

open set and maximal rp-open set.   

Nakaoka and Oda have introduced minimal 
open sets and maximal open sets, which are 

A. Vadivel and K. 
Vairamanickam introduced minimal rgα-open sets 

open sets in topological spaces. S. 
Balasubramanian and P.A.S. Vyjayanthi introduced 

open sets and maximal v-open sets; 
-closed sets in 

Inspired with these developments 
we further study a new type of open sets namely 

open sets and maximal rp-open sets. 

Throughout the paper a space X means a topological 
space (X, τ). The class of rp-open sets is denoted by 
RPO(X).  For any subset A of X its complement, 
interior, closure, rp-interior, rp-
respectively by the symbols Ac, A
rp(A) –. 
 

 
 

minimal open set if any open set contained in U is φ or U. 
open subset U of X is said to be a minimal semi-open set if any semi-open set contained in U is 

open subset U of X is said to be a minimal pre-open set if any pre-open set contained in U is 
open subset U of X is said to be a minimal v-open set if any v-open set contained in U is φ

open subset U of X is said to be a minimal rgαααα-open set if any rgα-open set contained in U is 

maximal open set if any open set containing U is X or U. 
open subset U of X is said to be a maximal semi-open set if any semi-open set containing U is X or U.

open subset U of X is said to be a maximal pre-open set if any pre-open set containing U is X or U.
open subset U of X is said to be a maximal v-open set if any v-open set containing U is X or U.

open subset U of X is said to be a maximal rgαααα-open set if any rgα-open set containing U is X or U.
                   

open Sets and Maximal rp-open Sets 
open subset U of X is said to be a minimal rp-open set

Minimal open set and minimal rp-open set are not same:  
, {a, c}, X}. {a, c} is Minimal open but not Minimal rp-open; {a} and {c} are 

open but not Minimal open.  
example and known results we have the following implications 

open set and W be a rp-open set. Then U ∩ W = φ or U⊂
open sets. Then U ∩ V = φ or U = V. 

open set and W be a rp-open set. If U ∩ W = φ, then there is nothing to prove.
U. Since U is a minimal rp-open set, we have U ∩ W = U. Therefore U 
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open set and maximal rp-open set and 

Throughout the paper a space X means a topological 
open sets is denoted by 

y subset A of X its complement, 
closure are denoted 
, Ao, A–, rp(A)0 and 

 
open set contained in U is φ or U. 

ained in U is φ or U. 
φ or U. 

open set contained in U is φ or U. 

open set containing U is X or U. 
open set containing U is X or U. 

open set containing U is X or U. 
open set containing U is X or U. 

open set if any rp-open set 

open; {a} and {c} are 

⊂  W. 

, then there is nothing to prove. 
W = U. Therefore U ⊂  W. 
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(ii) Let U and V be minimal rp-open sets. If U∩V ≠≠≠≠ φ, then U⊂  V and V⊂  U by (i). Therefore U = V.   
Theorem 2: Let U be a minimal rp-open set. If x∈U, then U⊂ W for any regular open neighborhood W of x.  
Proof: Let U be a minimal rp-open set and x be an element of U. Suppose ∃ a regular open neighborhood W of x 
such that U ⊄ W. Then U ∩ W is a rp-open set such that U ∩ W ⊂  U and U ∩ W ≠≠≠≠ φ. Since U is a minimal rp-
open set, we have U∩ W = U. That is U ⊂  W, which is a contradiction for U ⊄ W. Therefore U⊂ W for any 
regular open neighborhood W of x.    
Theorem 3: Let U be a minimal rp-open set. If x∈U, then U⊂ W for some rp-open set W containing x. 
Theorem 4: Let U be a minimal rp-open set. Then U = ∩{W: W∈RPO(X, x)} for any element x of U.  
Proof: By theorem[3.3] and U is rp-open set containing x, we have U⊂ ∩{ W: W∈RPO(X, x)} ⊂ U.  
Theorem 5: Let U be a nonempty rp-open set. Then the following three conditions are equivalent. 
(i) U is a minimal rp-open set 
(ii) U ⊂ rp(S) – for any nonempty subset S of U 
(iii) rp(U) – = rp(S) – for any nonempty subset S of U.  
Proof: (i) ⇒ (ii) Let x∈U; U be minimal rp-open set and S(≠≠≠≠ φ) ⊂ U. By theorem[3.3], for any rp-open set W 
containing x, S⊂ U ⊂ W ⇒ S⊂ W. Now S = S∩U ⊂ S∩W. Since S≠≠≠≠ φ, S∩W ≠≠≠≠ φ. Since W is any rp-open set 
containing x, by theorem[5.03], x∈rp(S) –. That is x∈U ⇒ x∈rp(S) – ⇒ U⊂ rp(S) –  for any nonempty subset S of 
U. 
(ii) ⇒ (iii) Let S be a nonempty subset of U. That is S⊂ U ⇒ rp(S) –⊂ rp(U) – → (1). Again from (ii) U⊂ rp(S) – 
for any S(≠≠≠≠ φ) ⊂ U ⇒ rp(U) –⊂ rp(rp(S) –)– = rp(S) –. That is rp(U) –⊂ rp(S) – → (2). From (1) and (2), we have 
rp(U) – = rp(S) – for any nonempty subset S of U. 
(iii) ⇒ (i) From (3) we have rp(U) – = rp(S) – for any nonempty subset S of U. Suppose U is not a minimal rp-open 
set. Then ∃ a nonempty rp-open set V such that V ⊂  U and V ≠≠≠≠ U. Now ∃ an element a in U such that a∉V ⇒ 
a∈Vc. That is rp({a}) – ⊂ rp(Vc)– = Vc, as Vc is rp-closed set in X. It follows that rp({a}) – ≠≠≠≠ rp(U)–. This is a 
contradiction for rp({a}) – = rp(U) – for any {a}(≠≠≠≠ φ) ⊂ U. Therefore U is a minimal rp-open set.   
Theorem 6: Let V ≠≠≠≠ φ be a finite rp-open set. Then ∃ at least one (finite) minimal rp-open set U such that U⊂ V. 
Proof: Let V be a nonempty finite rp-open set. If V is a minimal rp-open set, we may set U = V. If V is not a 
minimal rp-open set, then ∃ (finite) rp-open set V1 such that φ ≠≠≠≠ V1 ⊂ V. If V 1 is a minimal rp-open set, we may set 
U = V1. If V1 is not a minimal rp-open set, then ∃ (finite) rp-open set V2 such that φ ≠≠≠≠ V2 ⊂  V1. Continuing this 
process, we have a sequence of rp-open sets V ⊃ V1 ⊃ V2 ⊃ V3⊃ ..... ⊃ Vk ⊃ ...... Since V is a finite set, this process 
repeats only finitely. Then finally we get a minimal rp-open set U = Vn for some positive integer n.   
 [ A topological space X is said to be locally finite space if each of its elements is contained in a finite open set.]  
Corollary 1: Let X be a locally finite space and V ≠≠≠≠ φ be an rp-open set. Then ∃ at least one (finite) minimal rp-
open set U such that U ⊂  V.  
Proof: Let X be a locally finite space and V be a nonempty rp-open set. Let x in V. Since X is locally finite space, 
we have a finite open set Vx such that x in Vx. Then V∩Vx is a finite rp-open set. By Theorem 3.6 ∃ at least one 
(finite) minimal rp-open set U such that U ⊂  V∩Vx. That is U⊂ V∩Vx ⊂ V. Hence ∃ at least one (finite) minimal 
rp-open set U such that U⊂ V.    
Corollary 2: Let V be a finite minimal open set. Then ∃ at least one (finite) minimal rp-open set U such that U⊂ V.  
Proof: Let V be a finite minimal open set. Then V is a nonempty finite rp-open set. By Theorem 3.6, ∃ at least one 
(finite) minimal rp-open set U such that U⊂ V.     
Theorem 7: Let U; Uλ be minimal rp-open sets for any element λ∈Γ. If U ⊂ ∪∪∪∪λ∈ΓUλ, then ∃ an element λ ∈Γ such 
that U = Uλ.  
Proof: Let U ⊂ ∪∪∪∪λ∈ΓUλ. Then U ∩(∪∪∪∪λ∈ΓUλ) = U. That is ∪∪∪∪λ∈Γ(U ∩ Uλ) = U. Also by theorem[3.1] (ii), U ∩ Uλ = φ 
or U = Uλ for any λ∈Γ. It follows that ∃ an element λ∈Γ such that U = Uλ.      
Theorem 8: Let U; Uλ be minimal rp-open sets for any λ∈Γ. If U = Uλ for any λ∈Γ, then (∪∪∪∪λ∈ΓUλ) ∩ U = φ.  
Proof: Assume (∪∪∪∪λ∈ΓUλ) ∩ U≠≠≠≠ φ. That is ∪∪∪∪λ∈Γ(Uλ ∩ U) ≠≠≠≠ φ. Then ∃ an element λ∈Γ such that U ∩ Uλ ≠≠≠≠ φ. By 
theorem 3.1(ii), we have U = Uλ, which contradicts the fact that U ≠≠≠≠ Uλ for any λ∈Γ. Hence (∪∪∪∪λ∈ΓUλ)∩U = φ.     
We now introduce maximal rp-open sets in topological spaces as follows. 
Definition 2: A proper nonempty rp-open U⊂ X is said to be maximal rp-open set if any rp-open set containing U 
is either X or U.  
Remark 3: Maximal open set and maximal rp-open set are not same. 
Example 2: In Example 1, {a, c} is Maximal open but not Maximal rp-open; {a, b} and {b, c} are Maximal rp-open 
but not Maximal open. 
Remark 4: From the known results and by the above example we have the following implications: 
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Theorem 9: A proper nonempty subset F of X is maximal rp-open set iff X-F is a minimal rp-closed set. 
Proof: Let F be a maximal rp-open set. Suppose X-F is not a minimal rp-open set. Then ∃∃∃∃ rp-open set U ≠≠≠≠ X-F such 
that φ ≠≠≠≠ U ⊂  X-F. That is F ⊂  X-U and X-U is a rp-open set which is a contradiction for F is a minimal rp-closed 
set. 
Conversely let X-F be a minimal rp-open set. Suppose F is not a maximal rp-open set. Then ∃∃∃∃ rp-open set E ≠≠≠≠ F 
such that F ⊂  E ≠≠≠≠ X. That is φ ≠≠≠≠ X-E ⊂  X-F and X-E is a rp-open set which is a contradiction for X-F is a 
minimal rp-closed set. Therefore F is a maximal rp-open set.   
Theorem 10: (i) Let F be a maximal rp-open set and W be a rp-open set. Then F∪W = X or W⊂ F. 
(ii) Let F and S be maximal rp-open sets. Then F ∪ S = X or F = S. 
Proof: (i) Let F be a maximal rp-open set and W be a rp-open set. If F∪ W = X, then there is nothing to prove. 
Suppose F ∪ W ≠≠≠≠ X. Then F ⊂  F ∪ W. Therefore F∪W = F ⇒ W ⊂ F. 
(ii) Let F and S be maximal rp-open sets. If F∪S ≠≠≠≠ X, then we have F⊂ S and S⊂ F by (i). Therefore F = S.  
Theorem 11: Let F be a maximal rp-open set. If x is an element of F, then for any rp-open set S containing x, F ∪ S 
= X or S ⊂  F. 
Proof: Let F be a maximal rp-open set and x is an element of F. Suppose ∃∃∃∃ rp-open set S containing x such that F ∪ 
S ≠≠≠≠ X. Then F ⊂  F ∪ S and F ∪ S is a rp-open set, as the finite union of rp-open sets is a rp-open set. Since F is a 
rp-open set, we have F ∪ S = F. Therefore S ⊂  F.    
Theorem 12: Let Fα, Fβ, Fδ be maximal rp-open sets such that Fα ≠≠≠≠ Fβ. If Fα∩Fβ ⊂ Fδ, then either Fα = Fδ or  Fβ = Fδ 
Proof: Given that Fα ∩ Fβ ⊂  Fδ. If Fα = Fδ then there is nothing to prove.  
If Fα ≠≠≠≠ Fδ then we have to prove Fβ = Fδ . Now Fβ ∩ Fδ = Fβ ∩ (Fδ ∩ X) = Fβ ∩ (Fδ ∩ (Fα ∪ Fβ)(by thm. 3.10 (ii)) = 
Fβ ∩ ((Fδ ∩ Fα) ∪ (Fδ ∩ Fβ)) = (Fβ ∩ Fδ ∩ Fα) ∪ (Fβ ∩ Fδ ∩ Fβ)   
= (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) (by Fα ∩ Fβ ⊂  Fδ) = (Fα ∪ Fδ) ∩ Fβ = X ∩ Fβ (Since Fα and Fδ are maximal rp-open sets 
by theorem[3.10](ii), Fα ∪ Fδ = X) = Fβ. That is Fβ ∩ Fδ = Fβ ⇒ Fβ ⊂  Fδ Since Fβ and Fδ are maximal rp-open sets, 
we have Fβ = Fδ Therefore Fβ = Fδ  
Theorem 13: Let Fα, Fβ and Fδ be different maximal rp-open sets to each other. Then (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ). 
Proof: Let (Fα ∩ Fβ) ⊂  (Fα ∩ Fδ) ⇒ (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) ⊂  (Fα ∩ Fδ) ∪ (Fδ ∩ Fβ) ⇒ (Fα ∪ Fδ) ∩ Fβ ⊂  Fδ ∩ 
(Fα ∪ Fβ). Since by theorem 3.10(ii), Fα ∪ Fδ = X and Fα ∪ Fβ = X ⇒ X ∩ Fβ ⊂  Fδ ∩ X ⇒ Fβ ⊂  Fδ From the 
definition of maximal rp-open set it follows that Fβ = Fδ, which is a contradiction to the fact that Fα, Fβ and Fδ are 
different to each other. Therefore (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ).   
Theorem 14: Let F be a maximal rp-open set and x be an element of F. Then F = ∪ { S: S is a rp-open set 
containing x such that F ∪ S ≠≠≠≠ X}. 
Proof: By theorem 3.12 and fact that F is a rp-open set containing x, we have F⊂ ∪{ S: S is a rp-open set 
containing x such that F ∪ S ≠≠≠≠ X} – F. Therefore we have the result.   
Theorem 15: If F ≠≠≠≠ φ is proper cofinite rp-open set. Then ∃ (cofinite) maximal rp-open set E such that F⊂ E. 
Proof: If F is maximal rp-open set, we may set E = F. If F is not a maximal rp-open set, then ∃ (cofinite) rp-open set 
F1 such that F⊂ F1 ≠≠≠≠ X. If F1 is a maximal rp-open set, we may set E = F1. If F1 is not a maximal rp-open set, then ∃ 
a (cofinite) rp-open set F2 such that F⊂ F1 ⊂ F2 ≠≠≠≠ X. Continuing this process, we have a sequence of rp-open, F ⊂  
F1 ⊂ F2 ⊂  ... ⊂ Fk ⊂  .... Since F is a cofinite set, this process repeats only finitely. Then, finally we get a maximal 
rp-open set E = En for some positive integer n.   
Theorem 16: Let F be a maximal rp-open set. If x∈ X-F. Then X-F ⊂  E for any rp-open set E containing x. 
Proof: Let F be a maximal rp-open set and x in X-F. E ⊄ F for any rp-open set E containing x. Then E ∪ F = X by 
theorem 3.10(ii). Therefore X-F ⊂  E.  
  
Conclusion  

In this paper we introduced the concept of 
minimal rp-open and maximal rp-open sets, studied 
their basic properties. 
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